40x^2+250=50x^2+150

Simple and best practice solution for 40x^2+250=50x^2+150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40x^2+250=50x^2+150 equation:



40x^2+250=50x^2+150
We move all terms to the left:
40x^2+250-(50x^2+150)=0
We get rid of parentheses
40x^2-50x^2-150+250=0
We add all the numbers together, and all the variables
-10x^2+100=0
a = -10; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-10)·100
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*-10}=\frac{0-20\sqrt{10}}{-20} =-\frac{20\sqrt{10}}{-20} =-\frac{\sqrt{10}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*-10}=\frac{0+20\sqrt{10}}{-20} =\frac{20\sqrt{10}}{-20} =\frac{\sqrt{10}}{-1} $

See similar equations:

| 1/4(16x-4^2)=0 | | 6r+4=12r+7 | | 12x/2=2000 | | 27/6x=30/4 | | w-31=16 | | 5x9^2x=5/144 | | 2u=852 | | (3x-5)(x-3)=5 | | c-93=500 | | 92=g+8 | | n2+n=2 | | 18m=162 | | t-198=103 | | 14+7x=8x+6x | | 2(5+5x)=3(4x-6) | | 3(x−2)=12−x | | 5w/6=1 | | 2x+8x=5x+8+2x+13 | | f+477=791 | | P=12+7d/10 | | 16.7=z+7 | | -5(2+8m)=4m-(5+3m) | | 15k=930 | | 19f=912 | | b+8/b-7=3/4 | | c+9=45 | | -4=-1+r | | 1.93x71.4=137.802 | | 2x=3x=15 | | z+8=94 | | 3(4x-1)=-7(x-2) | | -3w=63 |

Equations solver categories